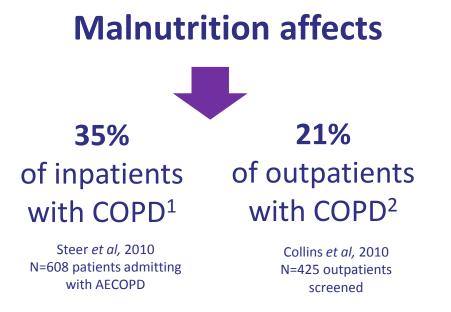

COPD SARCOPENIA AND PATIENT OUTCOMES

ARNS CONFERENCE 2019. COLDRA COURT, NEWPORT. SATURDAY 11TH MAY 2019

Terry Robinson Respiratory Nurse Consultant Harrogate and District NHS Foundation Trust



This symposium is intended for Healthcare Professional only

MALNUTRITION AFFECTS 1 IN 3 INPATIENTS WITH COPD AND 1 IN 5 OUTPATIENTS^{1,2}

Malnutrition is³

A state in which deficiency of nutrients such as energy, protein, vitamins or minerals results in measurable adverse effects on body composition, function or clinical outcome

MALNUTRITION CAN BE IDENTIFIED BY UNINTENTIONAL WEIGHT LOSS AND LOW BMI

NICE (CG32) recognises malnutrition as any of the following:¹

A body mass index (BMI) of less than 18.5 kg/m²

Unintentional weight loss of greater than 10% within the last 3–6 months

A BMI of less than 20 kg/m² and unintentional weight loss of greater than 5% within the last 3–6 months

European Respiratory Society: Unintentional weight loss >5% in 6 months, regardless of BMI = pre-cachexia²

MEASURING BMI ALONE IS INSUFFICIENT TO IDENTIFY NUTRITIONAL RISK^{1,2}

BMI

BMI is a standard measurement for nutritional risk in COPD patients (NICE NG115)³

BMI should be calculated in all patients with COPD³

Patients with low BMI (**<20 kg/m²**) should be given nutritional supplements and advised to take physical exercise³

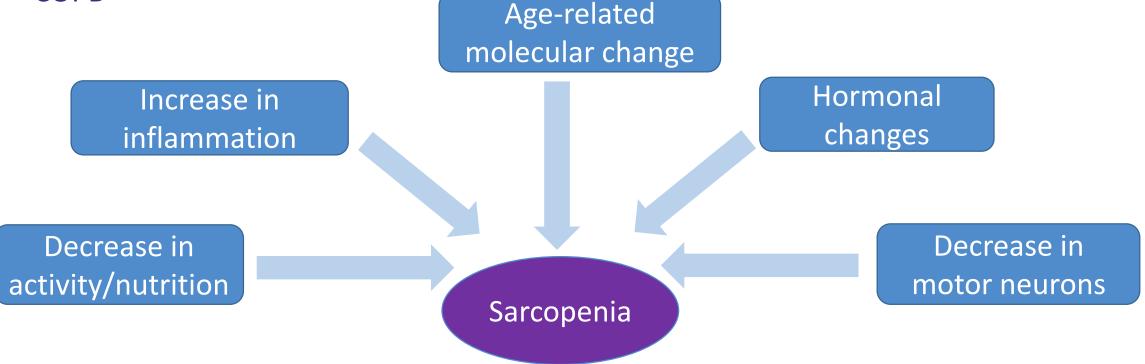
Recent unplanned weight loss

Unintentional weight loss of 5-10% indicates risk of malnutrition, regardless of BMI (BAPEN, 2003)¹

Unintentional weight loss of >5% during the last 6 months is considered clinically significant in COPD patients (ERS, 2014)²

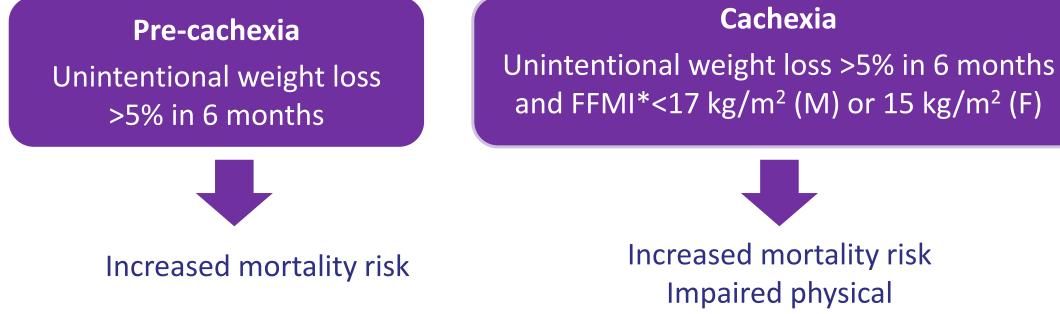
Low fat-free mass

Low fat-free mass (<10th percentile), independent of BMI and fat mass, is a strong predictor of mortality (ERS, 2014)²


Low BMI and particularly low fat-free mass is associated with worse outcomes in people with COPD (GOLD, 2017)⁴

1. Elia M (editor). The "MUST" report. Nutritional screening for adults: a multidisciplinary responsibility. BAPEN: Redditch, UK, 2003. 2. Schols AM, *et al. Eur Respir J.* 2014;44:1504–20. 3. NICE. Chronic obstructive pulmonary disease in over 16s: diagnosis and management (Clinical Guideline 101), 2010. nice.org.uk/guidance/cg101 [Accessed September 2017]. 4. Global Strategy for the Diagnosis, Management and Prevention of COPD. Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017. http://goldcopd.org [Accessed September 2017].

SARCOPENIA IS ACCELERATED IN OLDER ADULTS WITH COPD COMPARED TO HEALTHY OLDER ADULTS¹


- Sarcopenia: progressive and generalised loss of skeletal muscle mass and strength²
- Sarcopenia is accelerated by as much as 30% in elderly patients with mild to moderate COPD¹

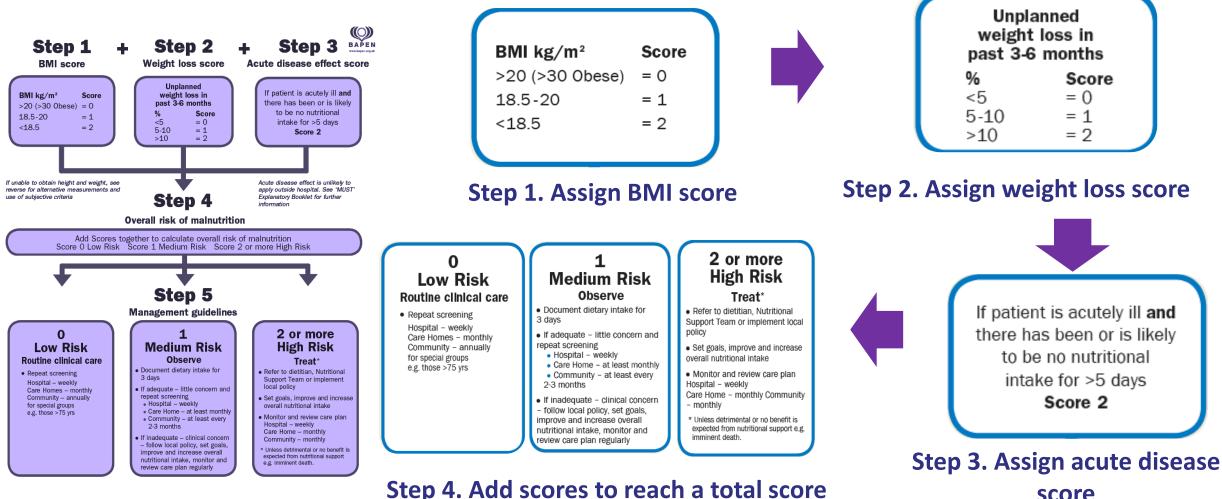
WEIGHT LOSS AND FAT-FREE MASS UNDERLINE TWO **IMPORTANT "METABOLIC PHENOTYPES" THAT INDICATE** NUTRITIONAL RISK IN COPD¹

ERS: Metabolic COPD phenotypes and associated risks:¹

Increased mortality risk Impaired physical performance

UNINTENTIONAL WEIGHT LOSS MAY BE MASKED BY NORMAL BMI

In a population of patients (N=94) admitted with (AECOPD):


- **51% of the population were overweight or obese,** with an average BMI of 25.9¹
- When fat-free mass (FFM) was also considered:
 - o 23% were cachectic
 - o 9% had muscle-atrophy
 - 6% were semi-starved

In a study of 83 patients consecutively hospitalised for AECOPD during one year:²

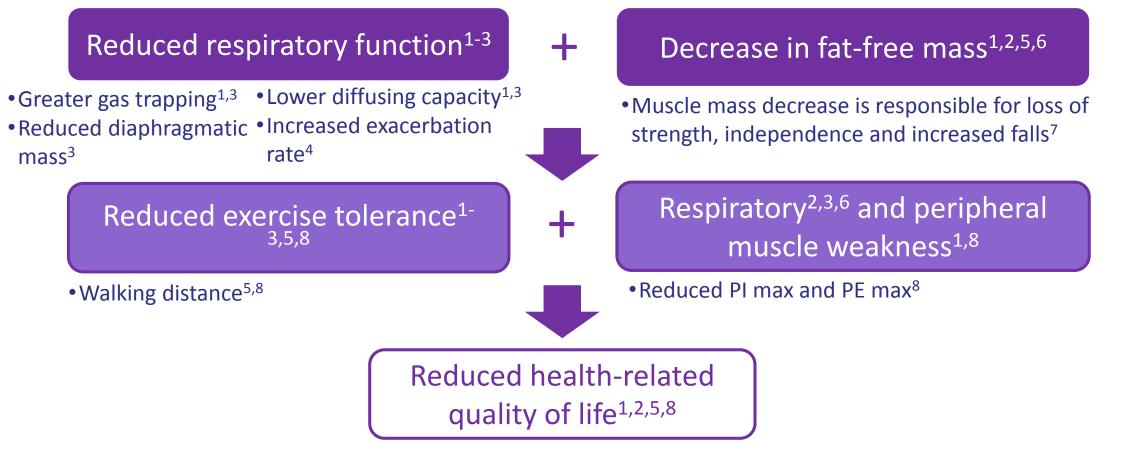
- All patients had experienced significant unplanned weight loss
 5.9 kg (men) vs 4.5 kg (women)
- But average BMI was normal or near-normal
 - 20.22 kg/m² (men) vs 19.38 kg/m² (women)

SCREENING FOR MALNUTRITION SHOULD INCLUDE BMI AND UNPLANNED WEIGHT LOSS¹

score

MALNOURISHED PATIENTS WITH COPD HAVE LONGER HOSPITAL STAYS AND ALMOST THREE TIMES THE RISK OF DEATH¹

An Australian study^{*1} found, among 286 patients with COPD being admitted to hospital:


- Patients coded as malnourished** were almost 3 times more likely to die within 1 year of initial presentation, compared to their nourished counterparts[†]
- Malnourished patients had a length of stay almost twice the duration as nourished patients, at almost double the cost

Outcome	Malnourished (n = 47)	Nourished (n = 239)	
Mean LOS (days) Emergency admissions	11.57 SD 10.94	6.67 SD 10.21	95% CI 1.65– 8.15 days; <i>p</i> = 0.003
Mortality at 1 year ^{††}	27.7%	12.1%	<i>p</i> = 0.006
Mortality at 2 years ^{††}	40.4%	18%	<i>p</i> =0.001

MALNUTRITION AGGRAVATES THE DISABLING FEATURES OF COPD THAT IMPACT ON QUALITY OF LIFE¹⁻⁶

Patients with COPD and low body weight have:

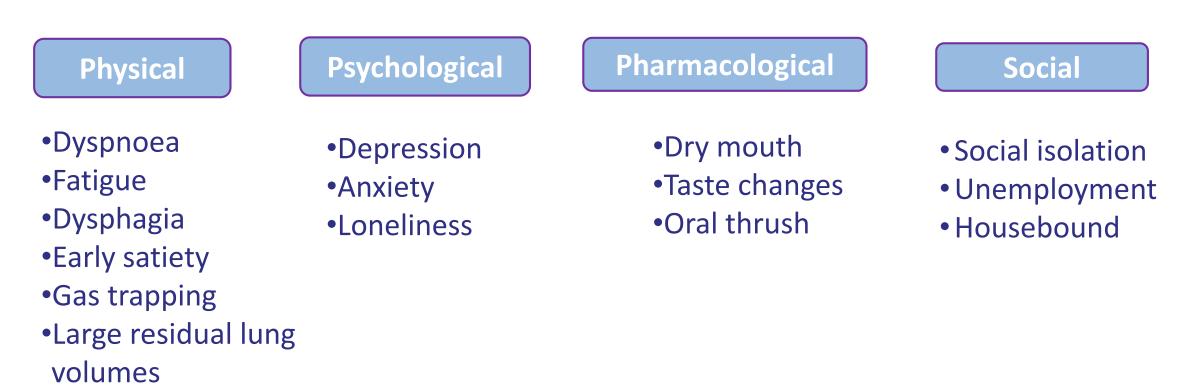
1. Collins PF, et al. Respirology 2013;18:616-629. 2. Ferreira IM, et al. Cochrane Database Syst Rev. 2012;12:CD000998. 3. Ezzell L & Jensen G. Am J Clin Nutr. 2000;72:141–146. 4. Hallin R, et al. Respir Med. 2006;100:561–567. 5. Goris A, et al. Am J Respir Crit Care Med. 1997:155:A498. 6. Schols A et al. Am Rev Resp Dis. 1991;143(6):1248-1252. 7. Santilli V, et al. Clin Cases Miner Bone Metab 2014;11(3):177-180. 8. Singer J et al. J Cardiopulm Rehabil Prev. 2011; 31(2):111-119.

PATIENTS WITH COPD AND UNPLANNED WEIGHT LOSS ARE IN NEGATIVE ENERGY BALANCE

"EXTERNAL"

Disturbed energy balance

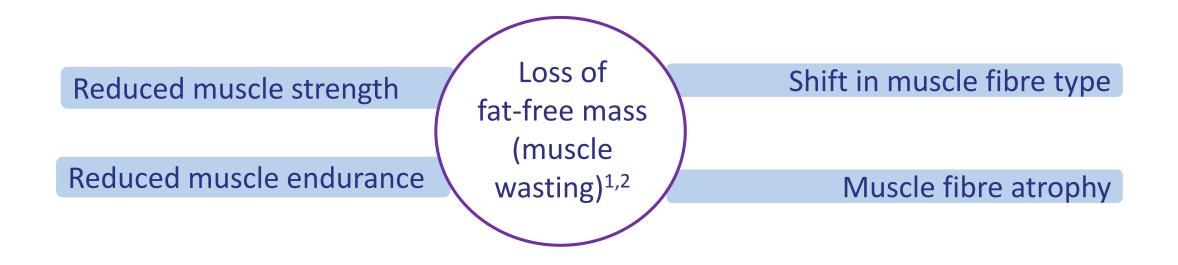
The disturbed energy balance results from a combination of internal and external factors:¹


▲ Nutritional requirements due to increased resting energy expenditure (REE) and altered metabolism¹⁻⁴

Nutritional intake
 caused by social,
 pharmacological,
 physical, & psychological
 factors^{1,4-6}

AGEING, DISEASE AND SOCIAL FACTORS CAN PREVENT PATIENTS FROM MEETING THEIR PROTEIN AND ENERGY REQUIREMENTS¹⁻³

✤ Nutritional intake



PHYSICAL INACTIVITY (DECONDITIONING) AND NUTRITIONAL IMBALANCE ARE INVOLVED IN MUSCLE WASTING IN COPD^{1,2}

Dysfunction in peripheral muscle

Muscle wasting is present in underweight patients with advanced disease, but also in 20–25% of normal weight individuals with moderate disease³

MUSCLE WASTING IN COPD IS ALSO A DIRECT RESULT OF CATABOLIC STIMULI

Dysfunction in peripheral muscle

Inflammatory response Production of key cytokines triggers muscle proteolysis cascade Induction of UbP (catabolic) system,

apoptosis and macroautophagy^{1,2}

Synthesis of acute phase proteins depletes amino acid pool, limiting muscle protein replenishment Lower plasma levels of glutamate/BCAAs³

Oxidative stress: inflammatory-mediated ROS¹ Proteolysis and increased expression of UbP components (muscle proteolysis cascade)^{1,2}

Corticosteroids

Increased myostatin levels and reduced insulin-like growth factor-1 levels¹

Low levels of growth factors and anabolic hormones, e.g. testosterone¹

Reduced muscle protein synthesis and enhanced proteolysis

Hypoxemia

Activation of muscle degradation through hypoxia-inducible factor / von Hippel– Lindau signalling cascade¹

Hypercapnia Intracellular acidosis / alterations in contractile protein synthesis/degradation¹

Muscle wasting

1. Maltais F, et al. Am J Respir Crit Care Med. 2014;189:e15–e62. 2. Schols AM & Gosker HR. Curr Opin Support Palliative Care. 2009;3:282–7. 3. Hsieh MJ, et al. J Formos Med Assoc. 2016;115:595–601.

PEOPLE WITH COPD REQUIRE UP TO 50% MORE PROTEIN THAN THEIR HEALTHY COUNTERPARTS¹

 Muscle protein is directly affected by protein intake in the diet²⁻⁴ and muscle oxidative metabolism may be stimulated nutritionally⁵

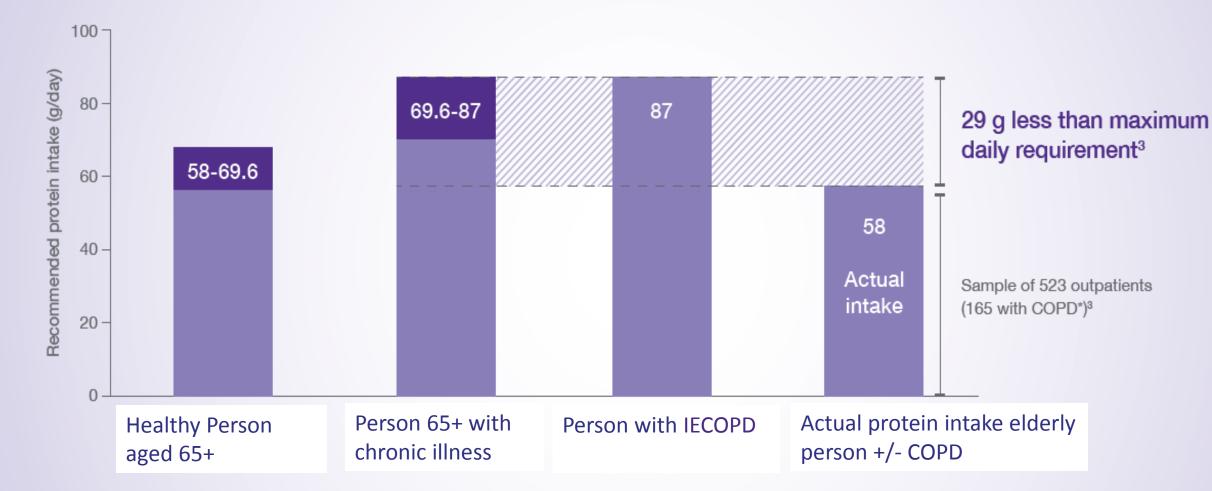
	Healthy older adults	Older adults with acute/chronic illness	Infective Exacerbation of COPD (IECOPD)	
Recommended protein intake (g/kg/day)	1.0-1.2 1.2-1.5		Up to 1.5	
	European Society for Clinical Nutrition and Metabolism, 2014 ¹		Vermeeren <i>et al.</i> ,1997²	

1. Deutz N, *et al. Clin Nutr.* 2014;33:929–36. **2**. Wolfe RR. *Clin Nutr.* 2008;27:675–84. **3**. Houston DK, *et al. Am J Clin Nutr.* 2008;87:150–5. **4**. Symons T *et al. Am J Clin Nutr* 2007;86:451–56. **5**. Schols AM, *et al. Chest.* 2013;144:1340–5. **6**. Bartali B, *et al J Gerontol A Biol Sci Med Sci.* 2006;61:589–93. **7**. Deutz N, *et al. Clin Nutr.* 2014;33:929–36. **8**. Vermeeren MAP *et al Eur Respir J.* 1997;10:2264–9. **9**. Schols AM, *et al. Eur Respir J.* 2014;44:1504–20.

THERE ARE MANY REASONS WHY OLDER ADULTS, PARTICULARLY THOSE WITH AN ILLNESS LIKE COPD, HAVE INCREASED PROTEIN NEEDS

- Protein intake in hospital and care home patients is often suboptimal¹
- Frailty can be prevented or reversed by intervention with greater protein intake and exercise²

Rationale for +50% protein requirement in the unwell elderly:²


To offset the elevated metabolism caused by COPD	To offset anabolic resistance of ageing	To offset the effects of muscle disuse and atrophy
and other stress factors associated with inflammatory conditions (e.g. oxidative stress)	Resistance to the positive effects of dietary protein on muscle synthesis.	Bed rest and sedentary lifestyle lead to changes in protein synthesis and breakdown

ESPEN: "Good nutrition, especially adequate protein intake, helps limit and treat age-related declines in muscle mass, strength, and functional abilities. Nutrition in combination with exercise is considered optimal for maintaining muscle function"²

PATIENTS WITH COPD MAY NOT BE ABLE TO MEET THEIR RECOMMENDED PROTEIN REQUIREMENTS

Actual vs recommended protein intake (example: patient aged 65+ and weighing 58 kg)

1. Department of Health. Dietary Reference Values for Food Energy and Nutrients for the United Kingdom 41, HMSO, London, 1991. 2. World Health Organization. Keep fit for life: Meeting the nutritional needs of older persons. http://apps.who.int/iris/bitstream/10665/42515/1/9241562102.pdf [Accessed September 2017]. 3. Deutz NE, et al. Clin Nutr. 2014;33:9293–26. 4. Vermeeren MAP, et al. Eur Respir J 1997;10:2264–69. 5. Laudisio A, et al. Arch Gerontol Geriat 2016;64:75-81.

IS IT REALISTIC FOR COPD PATIENTS TO GET THE EXTRA PROTEIN THEY NEED FROM DIET ALONE?

Lunch

Dinner

Snack

1 Egg 6.3 g protein 1 Slice of toast 2.8 g protein

Half a can of tuna 14.1 g protein

Chicken breast 29.5 g protein

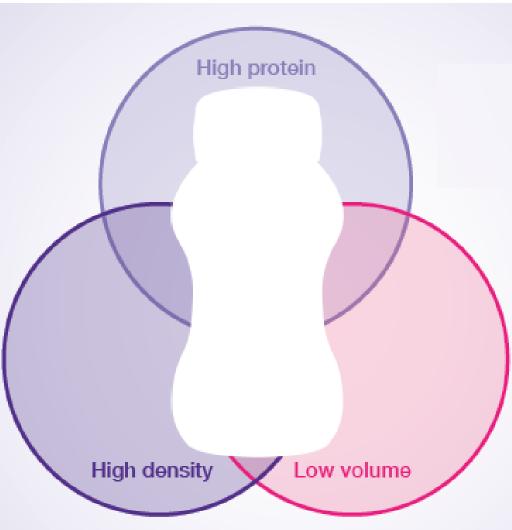
Half glass of milk 3.3 g protein 2 x digestive biscuits 1.8 g protein

29 g more protein a day

Bowl of porridge 5.3 g protein Glass of milk 6.6 g protein

1 tin baked beans 10 g protein

Slice of bread 2.8 g protein 1 tbap peanut butter 4.0 g protein


TOTAL

PROTEIN

NUTRICIA

HIGH PROTEIN AND ENERGY DENSITY ARE KEY NEEDS FOR PATIENTS WITH COPD

- A high protein oral nutrition supplement (ONS) is one containing ≥20% of its energy from protein¹
- An energy dense supplement is one containing is >2kcal/ml
- Low volume oral nutritional supplements (ONS) may make it easier to consume the energy levels they need^{2,3}

FORTISIP[®] COMPACT PROTEIN IS AN IDEAL HIGH PROTEIN, HIGH ENERGY, LOW VOLUME ONS

18g protein	300 kcal of energy	1.25ml bottle	High protein
24% of total energy Milk proteins (casein, whey) stimulate net whole body protein synthesis in undernourished COPD patients ²	High calorie supplementation increased body weight, FFM, handgrip strength and exercise capacity in undernourished COPD patients ¹	The small volume of Fortisip [®] Compact Protein is designed to be manageable for patients and to impact less on their normal fluid and food intake	Rutreicia Fortisip Compact Protein Compact Protein
Essential amino acids may aid in the prevention and treatment of muscle wasting in COPD patients ²	Recommended dail day provides: • 36g protein • 600kcal energy	y dose of 2 bottles per	High density Low volume

COMPARISON WITH MOST COMMONLY USED PRODUCTS

	1 serving (ready to drInk)						1 serving (67 g powder reconstituted with 200 ml of mlik) [†]	
	Fortisip® Compact Protein (Nutricia)	Fresubin [®] Protein Energy (Fresenius Kabi)	Ensure® Plus Advance (Abbott)	Ensure® Compact (Abbott)	Altraplen® Compact (Nualtra)	Altraplen® Protein (Nualtra)	AYMES® Shake (Aymes)	
Energy (kcal/unit)	300	300	330	300	300	300	388	
Energy (kcal/ml)	2.4	1.5	1.5	2.4	2.4	2.4	2.0	High energy
Volume (ml)/ presentation	125	200	220	125	125	200	256	Low volume
% total energy from protein	24%	27%	24%	17%	16%	27%	14%	
Protein (g/unit)	18	20	20	12.8	12	20	15.6	High protein
Protein (g/ml)	0.14	0.10	0.09	0.10	0.10	0.10	0.08	

†Details provided are for vanilla flavour. Product can also be reconstituted with whole milk.

FORTISIP® COMPACT PROTEIN: PUTTING COST INTO CONTEXT

AUTRICIA COLLEGA Contispe Compact Protein Compact Protein Compact Protein	Cost of high protein, low volume, energy dense ONS		Cost of a hospital admission for COPD	
AUTRICIA EOCTÍSÍP Isopact Protein Isopact Protein Isopact Protein	£2.00 per unit ¹		£1960 inpatient-only cost ^{*2}	1 All
	2 x day =			Con a
	~£120/month			141000
	for 3 months			and the part of the second

By ensuring patients are assessed using a validated nutritional screening tool and ONS are only prescribed for those who are malnourished or at high risk of malnutrition, it is possible to ensure ONS are used both clinically and cost effectively (NICE, 2011³)

• MIMS. Fortisip Bottle. http://www.mims.co.uk/drugs/nutrition/tube-and-sip-feeding/fortisip-compact-protein [Accessed September 2017]. **2.** NICE. National costing report: chronic obstructive pulmonary disease. 2011. www.nice.org.uk/guidance/cg101/resources/costing-report-134511805 [Accessed September 2017]. **3.** NICE Shared Learning Database. Clinical and cost effective prescribing of Oral Nutritional Supplements for Adults in the Community. https://www.nice.org.uk/sharedlearning/clinical-and-cost-effective-prescribing-of-oral-nutritional-supplements-for-adults-in-the-community [Accessed September 2017].

SUMMARY

- 'MUST' is a validated five step tool used to identify and manage adults at risk of malnutrition
- 'MUST' uses BMI, unintentional weight loss and acute disease effect scores to calculate an overall malnutrition risk score
- Weight gains of ≥2 kg are associated with significant functional improvements and this is therefore recommended as a therapeutic target
- ONS contain energy, protein and micronutrients, can improve total nutritional intake with little suppression of voluntary food intake and are available in a variety of different styles and formats
- When choosing an ONS the healthcare professional should consider nutritional requirements, patients ability to tolerate volume, patients ability to take the ONS and patient preference

