

Nutrition in geriatrics – a look at the ESPEN guidelines

Tommy Cederholm, MD, PhD

Professor Clinical Nutrition & Metabolism, Uppsala University

Senior Consultant Theme Ageing, Karolinska University Hospital, Stockholm Sweden

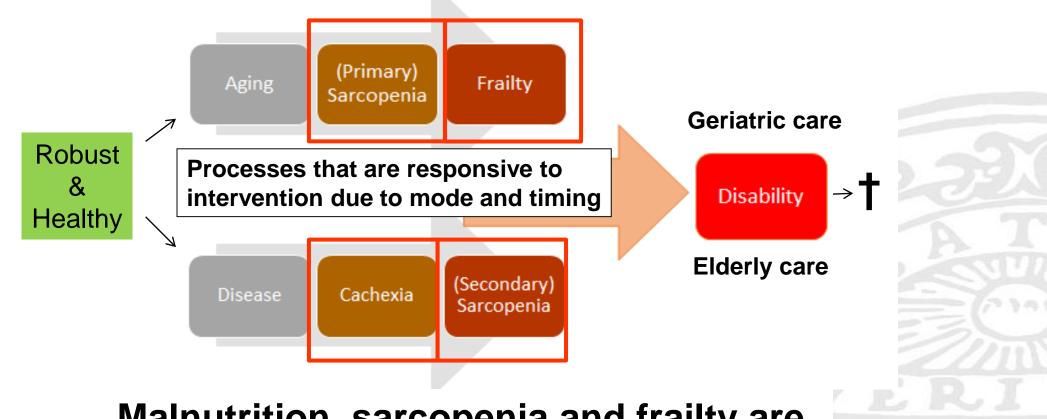
Previous ESPEN officer

- sarcopenia and
- frailty
- New diagnostic criteria according to GLIM combines
 - Weight loss, low BMI, muscle mass \downarrow
 - Reduced food intake, inflammatory disease
- ESPEN guideline on nutrition and hydration in geriatrics
 - 82 recommendations based on 337 papers: SR and RCTs
 - Grades of recommendation (A, B, 0, GPP (good practice point))
 - 15 Grade A recommendations, >50% "expert agreement"
 - Strength of consensus; >90% in most recommendations

ESPEN guideline on clinical nutrition and hydration in geriatrics

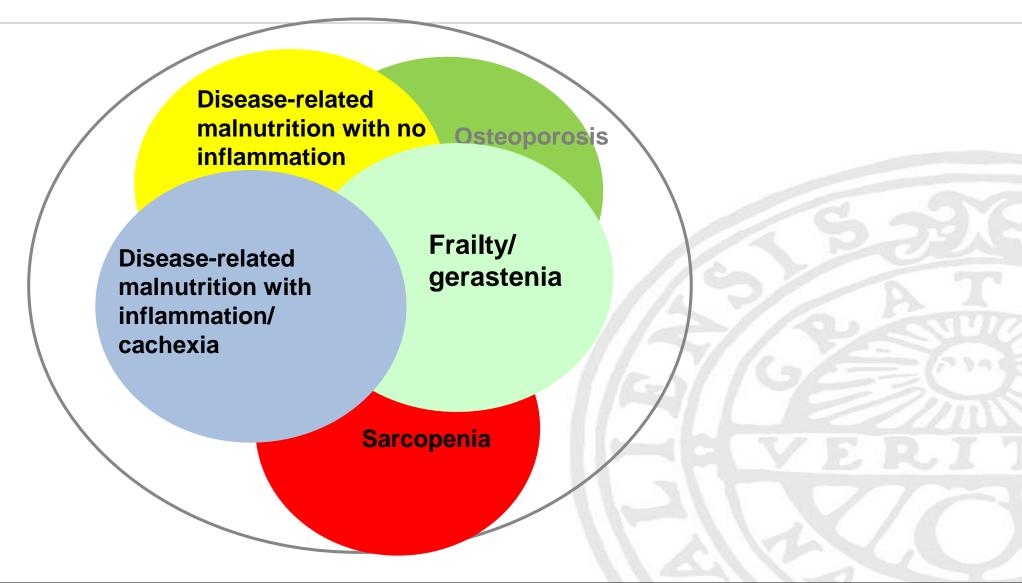
82 recommendations - based on 337 papers, multistage Delphi process, voting among ESPEN membership

- Basics general principles (11 rec.)
 - Screen routinely followed by systematic assessment
 - Individualize; 30 kcal/kg bw/d, 1 g protein/kg bw/d
- Malnutriton (31 rec.)
 - If ONS; provide >400 kcal and 30 g protein/d Grade A
- Specific diseases (18 rec.)
 - Hip fracture: Provide older patiens with ONS postop
- Hydration (22 rec.)
 - Women: 1.6 L drinks/d
 - Men: 2 L drinks/d


THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Volkert et al et al. Clin Nutr 2018

Ageing & disease \rightarrow disability & \uparrow



Malnutrition, sarcopenia and frailty are risk factors for disability and death

Overlapping catabolic conditions related to reduced function at old age

Shared etiologies of malnutrition, sarcopenia and physical frailty

Inflammation

ageing, disease, dysbiosis

Inactivity/bed rest

Nutritional deficiencies

"anorexia of aging", protein RDI too low

Hormonopause

testosteron \downarrow , estrogen \downarrow , DHEA \downarrow , GH \downarrow , IGF-I \downarrow

Insulin resistance

relative obesity, inflammation

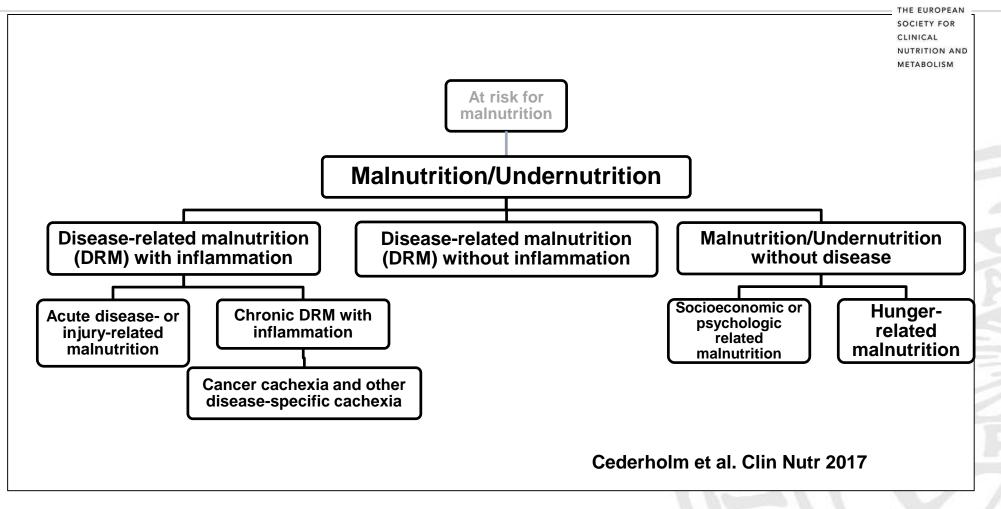
Apoptosis↑

Caspase activation, mitochondria DNA mutations

Motor-unit losses (~50% between 25 and 75 y)

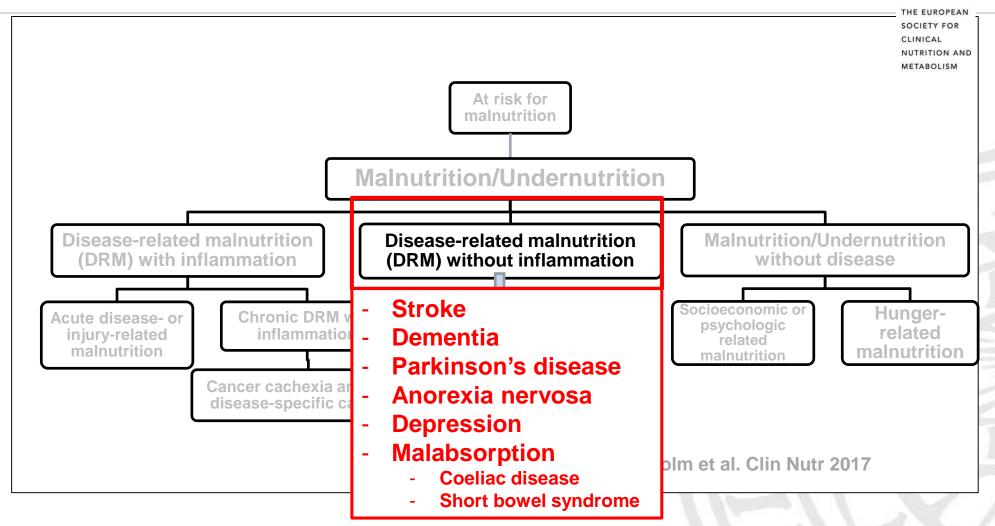
neuro-muscular synaptic damage

Microbiota/Dysbiosis


"Leaky gut"

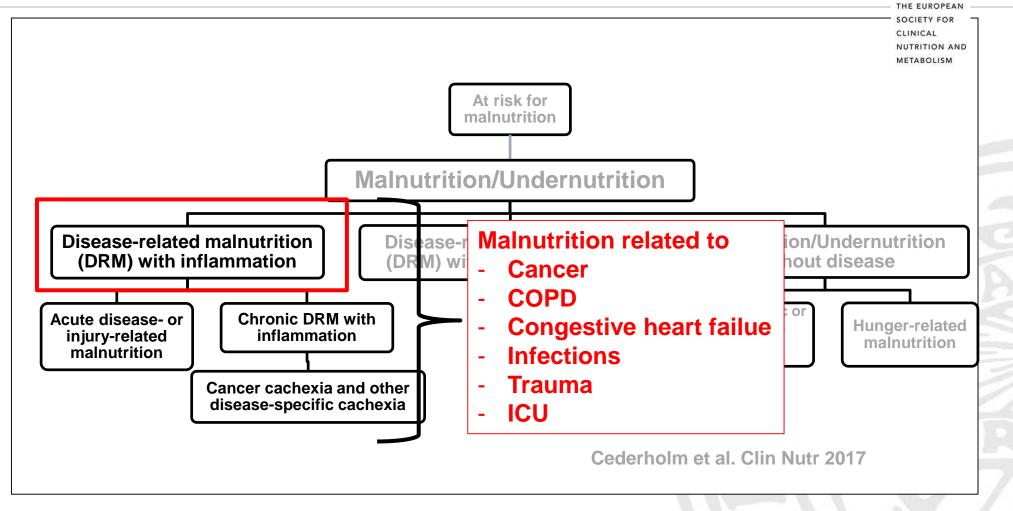
ESPEN Guidelines on Definitions and Terminology

Malnutrition diagnosis scheme


ESPEN

ESPEN Guidelines on Definitions and Terminology

Malnutrition without inflammation


ESPEN

ESPEN Guidelines on Definitions and Terminology

Malnutrition with inflammation

Efforts in the search for the optimal malnutrition diagnosis tool for global acceptance

- Subjective Global Assessment (SGA) 1987
- Patient-Generated (PG)-SGA 1995
- Mini Nutritional Assessment (MNA) 1999
- Malnutrition Universal Screening Tool (MUST) 2000
- MNA-Short Form (MNA-SF) 2001
- Nutritional Risk Screening-2002 (NRS-2002) 2002
- Cachexia (by Evans) 2008
- Protein Energy Wasting (kidney) 2008
- ESPEN 2010
- Cancer cachexia (by Fearon) 2011
- AND/ASPEN 2012
- ESPEN 2015

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

ESPEN, ASPEN, FELANPE, PENSA

- **Modified Delphi process**
 - **GLIM** face-to-face meetings **CNW/Austin Jan 2016 ESPEN/Copenhagen Sept 2016** CNW/Orlando Feb 2017 **ESPEN/The Hague Sept 2017 ASPEN/Las Vegas Jan 2018 ESPEN/Madrid Sept 2018**

Jensen, JPEN 2016 Jensen & Cederholm. JPEN 2017 Cederholm & Jensen. Clin Nutr 2017

and Enteral Nutrition

Survey of criteria used in existing tools

UPPSALA UNIVERSITET			MNA- SF	MUST	ESPEN 2015	ASPEN/ AND 2012	SGA	Evans 2008	Fearon 2011
	Etiology								
	Reduced food intake	Y	Y	Y	Y	Y	Y		Υ
	Severe disease /Inflammation	Y	Y	Y	Y	Y	Y	Y	Y
	Symptoms								
	Anorexia		Y				Υ	Y	Υ
	Weakness		Y				Υ	Y	
	Signs/Phenotype								
	Weight loss	Y	Y	Y	Y	Y	Y	Y	Y
	Body mass index	Y	Y	Y	Y			Y	Y
	Lean/fat free /muscle mass		Y		Y	Y	Y	Y	Y 🔰
	Fat mass					Υ	Υ		
	Fluid retention					Y	Y		
	Muscle function; e.g. grip strength					Y		Y	

GLIM consensus criteria decided aspen

American Society for Parenteral and Enteral Nutrition

	NRS-	MNA-	MUST	ESPEN	ASPEN/	SGA	Evans	Fearon
	2002	SF		2015	AND 2012		2008	2011
Etiologic criteria								
Reduced food intake	Y	Y	Y	Y	Y	Y		Y
Severe disease	Υ	Υ	Υ	Y	Υ	Y	Y	Υ
/Inflammation								
Phenotypic criteria								
Weight loss	Y	Y	Y	Y	Y	Y	Y	Υ
Body mass index	Y	Y	Υ	Y			Υ	Υ
Lean/fat free /muscle		Υ		Y	Υ	Υ	Υ	Υ
mass								

The GLIM criteria co-published in Clin Nutr, JPEN and JCSM 2018

American Society for Parenteral and Enteral Nutrition

CLINICAL

NUTRITION

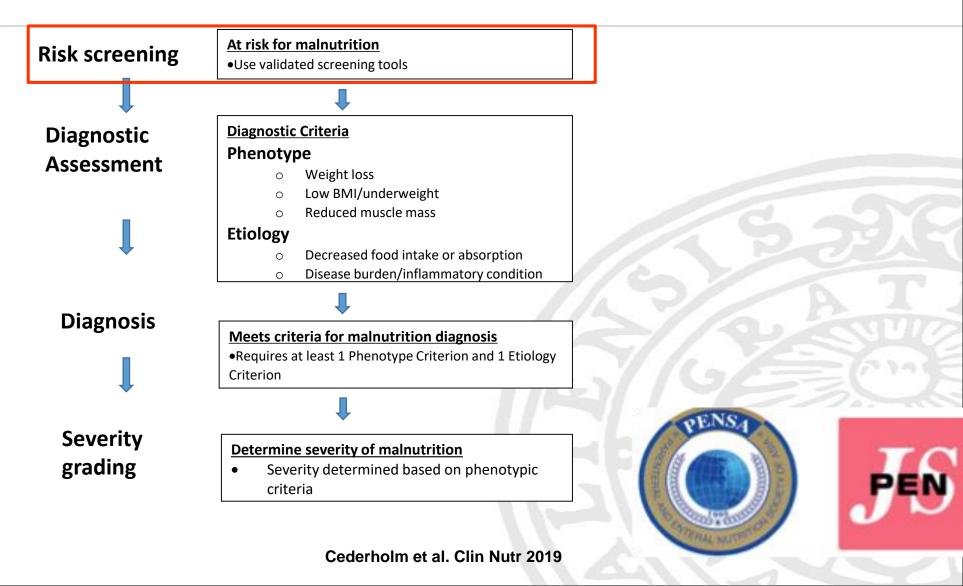
Contents lists available at ScienceDirect Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

ESPEN Endorsed Recommendation

GLIM criteria for the diagnosis of malnutrition − A consensus report from the global clinical nutrition community^{*}

T. Cederholm ^{a, b, *,1}, G.L. Jensen ^{c, 1}, M.I.T.D. Correia ^d, M.C. Gonzalez ^e, R. Fukushima ^f, T. Higashiguchi ^g, G. Baptista ^h, R. Barazzoni ⁱ, R. Blaauw ^j, A. Coats ^{k, 1}, A. Crivelli ^m, D.C. Evans ⁿ, L. Gramlich ^o, V. Fuchs-Tarlovsky ^p, H. Keller ^q, L. Llido ^r, A. Malone ^{s, t}, K.M. Mogensen ^u, J.E. Morley ^v, M. Muscaritoli ^w, I. Nyulasi ^x, M. Pirlich ^y, V. Pisprasert ^z, M.A.E. de van der Schueren ^{aa, ab}, S. Siltharm ^{ac}, P. Singer ^{ad, ae}, K. Tappenden ^{af}, N. Velasco ^{ag}, D. Waitzberg ^{ah}, P. Yamwong ^{ai}, J. Yu ^{aj}, A. Van Gossum ^{ak, 2}, C. Compher ^{al, 2}, GLIM Core Leadership Committee, GLIM Working Group³


ESPEN

THE EUROPEAN

SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

The GLIM procedure for the diagnosis of malnutrition

THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

The GLIM concept of malnutrition aspen

American Society for Parenteral and Enteral Nutrition

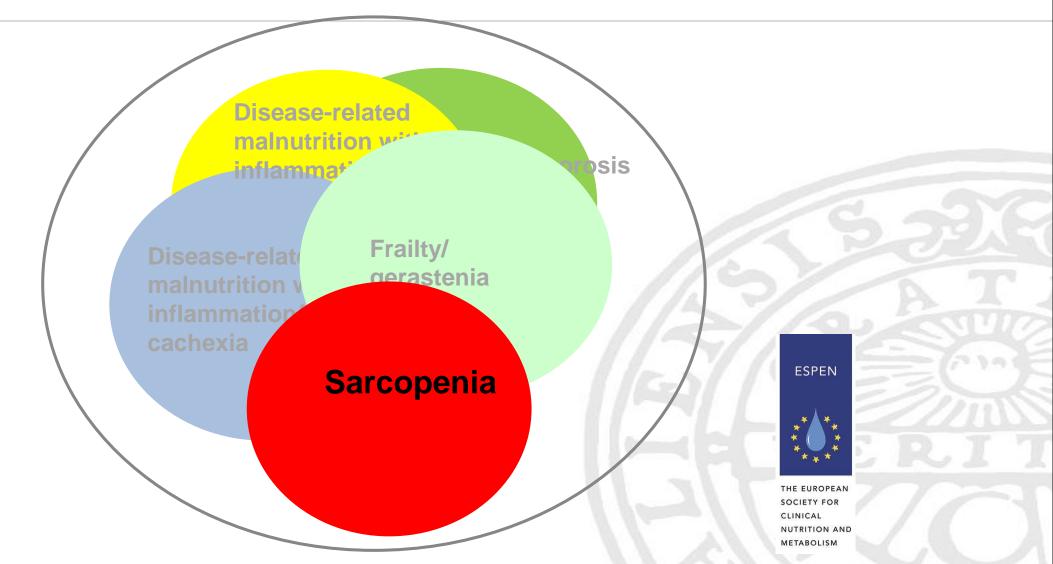
Diagnosis of malnutrition requires at least

- 1 Phenotypic criterion and
- 1 Etiologic criterion

Phenotypic Criteria			Etiologic Criteria		
Weight loss (%)	Low BMI (kg/m²)	Reduced muscle mass	Decreased food intake or malabsorption	Inflammation	
 >5% within past 6 months or >10% beyond 6 months 	<20 if <70 years or <22 if >70 years Asia: <18.5 if <70 yrs or <20 if >70 years	By validated body composition measuring techniques (see EWGSOP2)	<50% of ER >1 week, or any reduction for >2 weeks, or any chronic gastro- intestinal malabsorption	Acute disease/injury or chronic disease- related inflammation	

Cederholm et al. Clin Nutr 2019

Severity grading by phenotype Stage 1 (moderate) and Stage 2 (severe) malnutrition

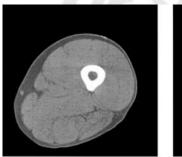

	Phenotypic Criteria					
	Weight loss (%)	Low body mass index (kg/m ²)	Reduced muscle mass			
Stage 1 Moderate Malnutrition (Requires 1 phenotypic criterion that meets this grade)	5-10% within the past 6 mo, or 10-20% beyond 6 mo	<20 if <70 yr, <22 if ≥70 yr	Mild to moderate deficit (per validated assessment methods)			
Stage 2 Severe Malnutrition (Requires 1 phenotypic criterion that meets this grade)	>10% within the past 6 mo, or >20% beyond 6 mo	<18.5 if <70 yr, <20 if ≥70 yr	Severe deficit (per validated assessment methods)			

Cederholm et al. Clin Nutr 2019

Overlapping catabolic conditions related to reduced function at old age

Sarcopenia/muscle failure –

still an emerging concept


"Muscle loss steals the freedom of the old,,

Irvin Rosenberg 1989

- By ICD-10-CM code M62.84 (2016) sarcopenia is defined as a disease
- Muscle mass decrease by
 - 30-50% from 20 to 80 y
 - 1-2%/y after 50 y
- Selective typ II fibre atrophy
- Muscle strength \downarrow by
 - 15%/10 years between 50 and 70 y
 - 30%/10 years >70

Sarcopenia is a syndrome

- progressive loss of muscle strength and mass
- risk of adverse outcomes Cruz-Jentoft et al. Age Aging 2010/2018

Young, active

Old, sedentary

Diagnostic criteria for sarcopenia/muscle failure

Impaired muscle strength

- Grip strength (kg): 20/16 (w), 30/27 (m) = Probable sarcopenia
- Chair rise: 5 sit-to-stands in >15 sec

+

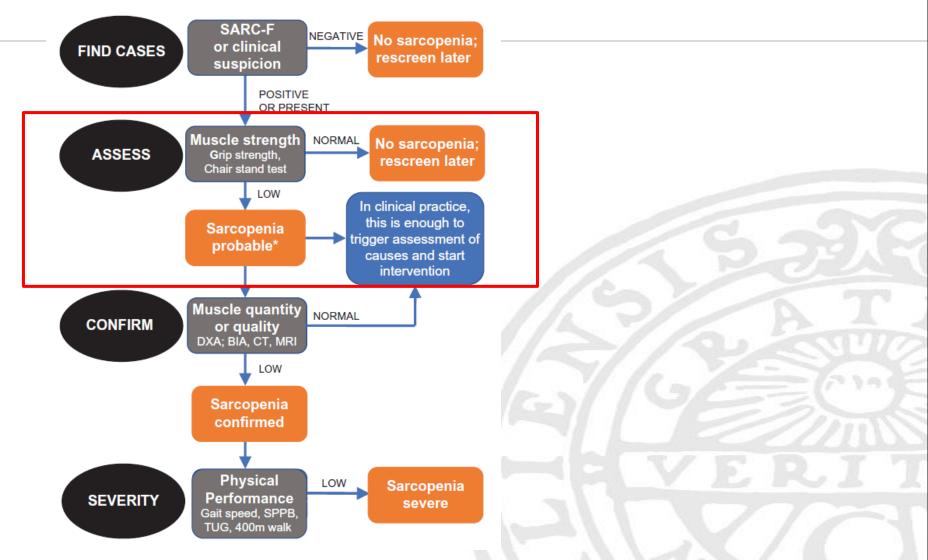
Low muscle mass

- App. skeletal mass index (kg/m²): <5.5 (w), <7 (m) = Sarcopenia
- Fat free mass index (kg/m²): 15 (w), 17 (m)

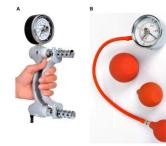
÷

Reduced muscle function

- gait speed <0.8 m/s


= Severe sarcopenia

The EWGSOP2 algorithm for case-finding


EWGSOP2: Cruz-Jentoft et al. Age Ageing 2019

Measuring muscle strength, function and mass in clinical practice?

- Hand grip
 - Jamar Handdynamometer
 - Martin Vigorimeter?
- Chair rising
 - Time for 5 stand-ups
 - No. in 30 sec
- Stair climb test
- Walking speed
 - 4-10 m
 - Timed-up-go

• DEXA

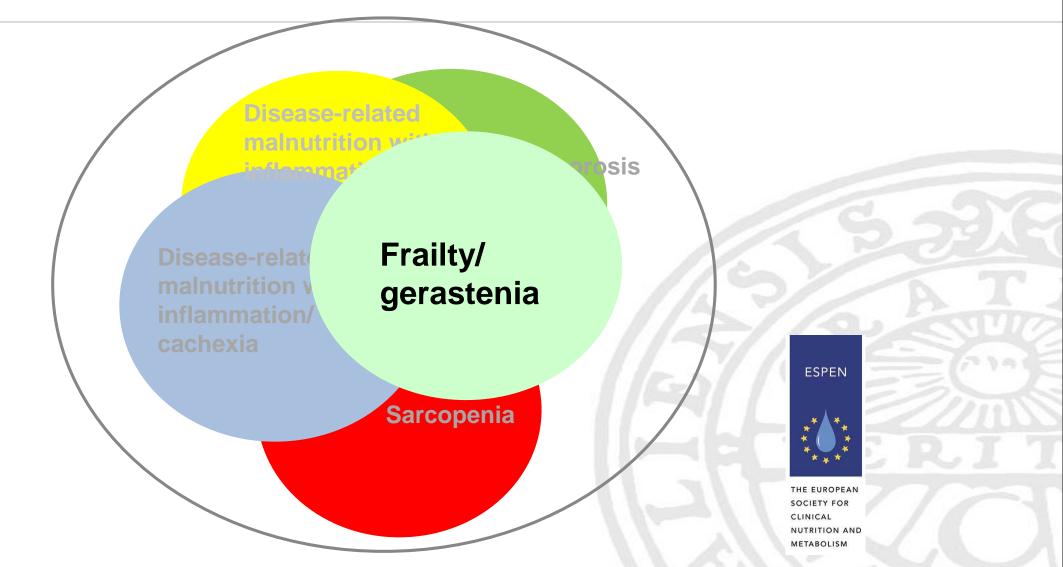
- Bioelectric Impedance Analysis (BIA)
- Anthropometry
- CT?, MRI?, US?



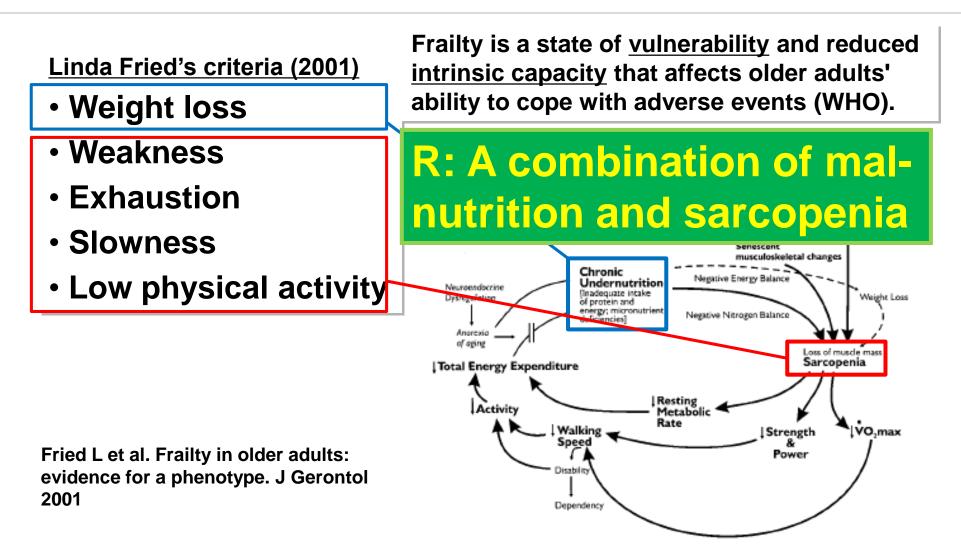
The role of muscle

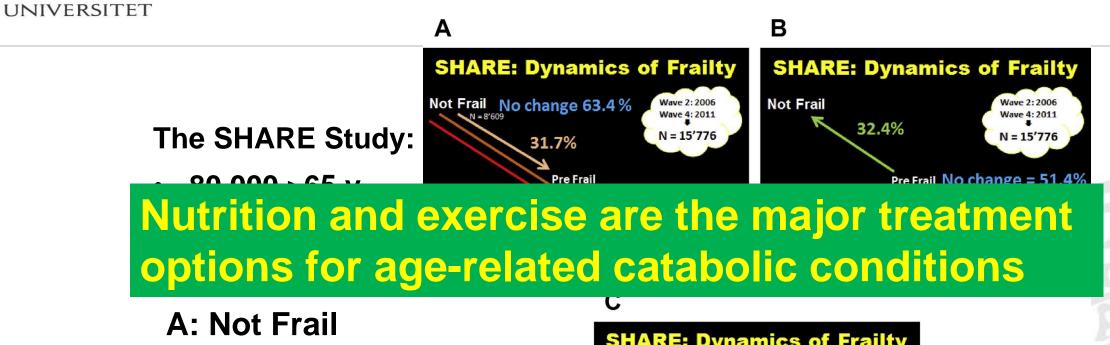
- ~40% of body weight
- 50-75% of body protein
- Mobility
- Strength

_ _ _ _

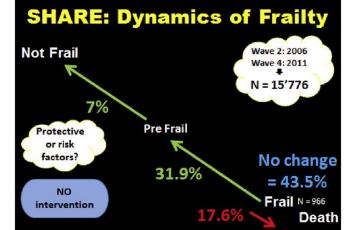

- Amino acid pool
- Glucose regulation
- Energy metabolism
- Endocrine functions

Overlapping catabolic conditions related to reduced function at old age





Q: What is frailty?



Frailty is reversible – The SHARE Study

B: Pre Frail C. Frail (40% improved)

UPPSALA

Treatment options for malnutrition, sarcopenia and physical frailty

✓Nutrition

- Regular food
- Oral supplementation
- Energy enriched
- Protein enriched
 - Essential amino acids
- Vitamin D
- Essential fatty acids
- Dietary patterns
- Enteral nutrition
- Nasogastric tube
- PEG
- Parenteral nutrition

✓ Anabolic treatment

- BCAA, <mark>leucin</mark>, HMB
- GH, Nandrolon,
- SARMs

✓ Reduce catabolism

- Myostatin inhibitors decoy receptors
- Ghrelin agonists anamorelin
- Megesterol acetate
- Proteasome inhibitors
- ACE inhibitors

✓Immuno modulation

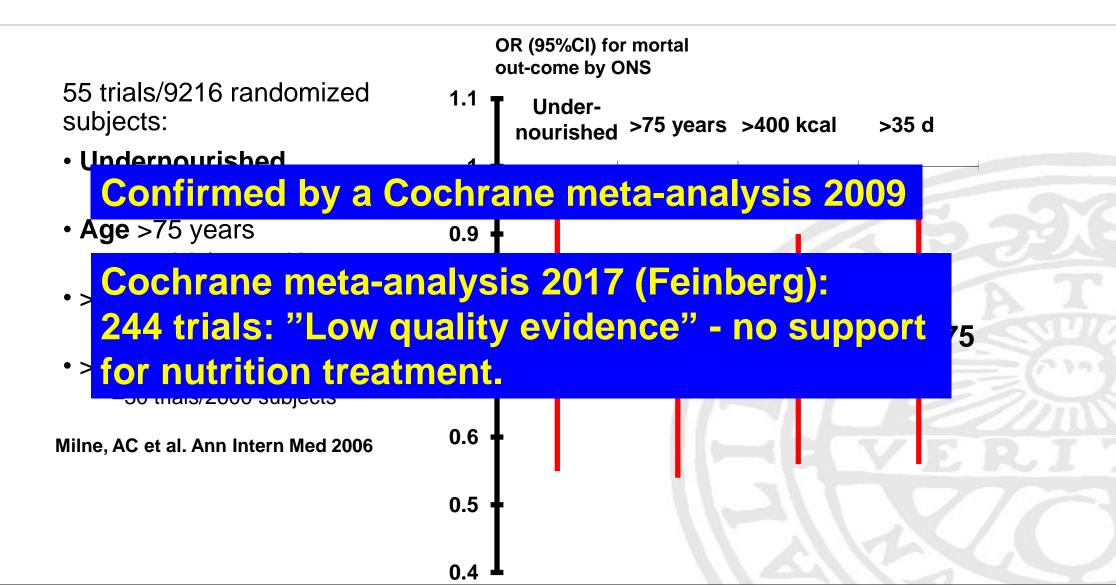
- n-3 and n-6 fatty acids
- Arginine, glutamine
- Anti-oxidants

✓ Physical activity Resistance training

ESPEN guideline on clinical nutrition and hydration in geriatrics

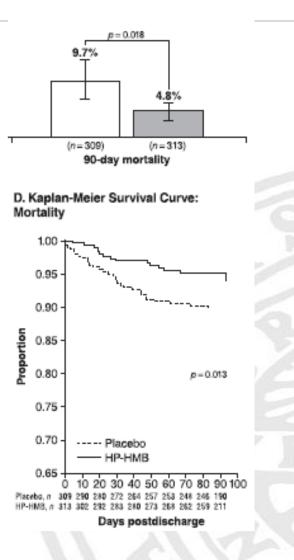
48 recommendations on nutritional therapy

- Education, counselling by dietician
- Mealtime assistance, home-like environment, share mealtime
- Fortified food, snacks, finger-food, texture modification
- ONS: 400 kcal/d, 30 g prot/d; >1 month
- EN: start without delay, <4 w by NG tube, >4 w PEG
- Combine with physical activity
- Hip fracture: Always offer ONS (NOT overnight EN)
- Delirium (prevention), depression, pressure ulcer (healing),
- Obesity: Avoid weigt loss if not indicated, if WL also PA
- Diabetes mellitus: Avoid restrictive diets.


THE EUROPEAN SOCIETY FOR CLINICAL NUTRITION AND METABOLISM

Volkert et al et al. Clin Nutr 2018

Oral supplementation in older people – Meta-analysis on mortality by subgroup



- 652 hospitalized patients, >65 y
- Heart failure, COPD, Pneumonia, ...
- Malnourished many likely also sarcopenic
- 350 kcal, 20 g prot, 160 IU Dvitamin, 1.5 g HMB x2/placebo
- 90 days

Conclusion:

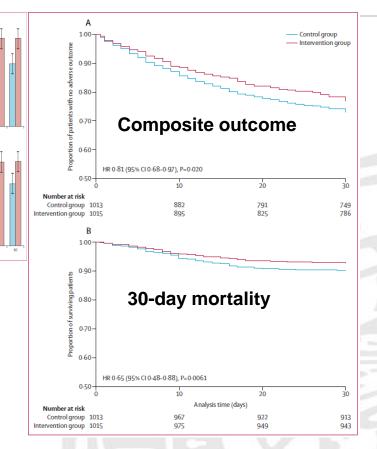
Mortality down by half after three months of ONS treatment; from ~10% till ~5%

Individualised nutritional support to medical in-patients: The EFFORT Trial

Intake²

2088 malnourishd in-patients; >50% >75 y

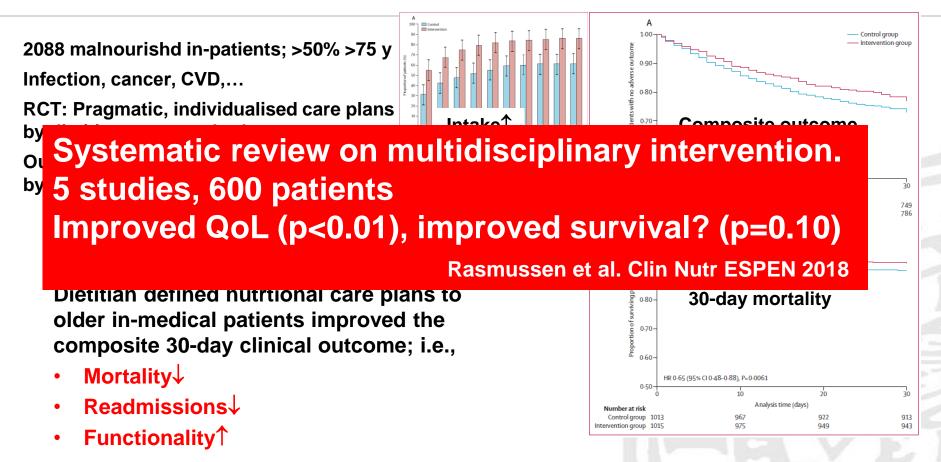
Infection, cancer, CVD,...


RCT: Pragmatic, individualised care plans by dietitians vs. standard

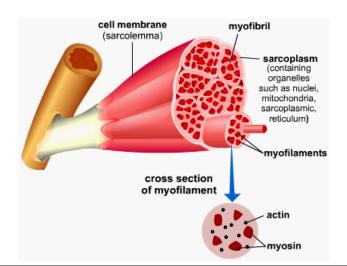
Outcome: Composite **†**, re-adm, function↓ by Barthel over 30 days

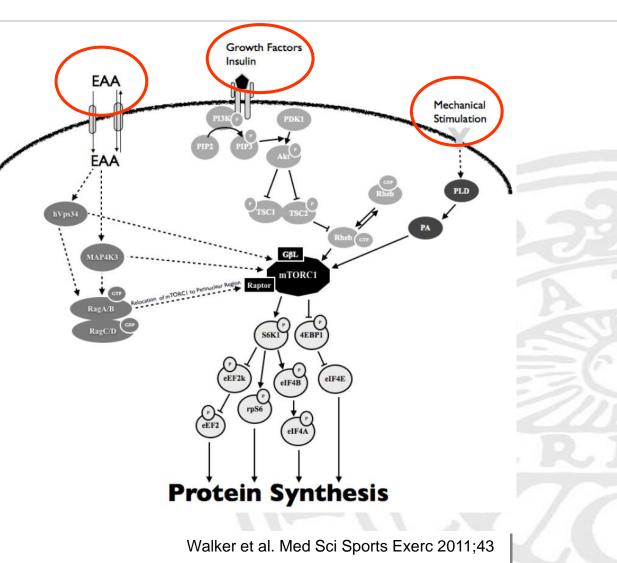
Conclusion

Dietitian defined nutrtional care plans to older in-medical patients improved the composite 30-day clinical outcome; i.e.,


- Mortality↓
- Readmissions↓
- Functionality↑

Individualised nutritional support to medical in-patients: The EFFORT Trial


Schuetz et al. Lancet 2019



How to generate protein synthesis?

- mTOR activation
 - Amino acids
 - Mechanical stimulation
 - Anabolic hormones
- Transcription
- Translation

Protein intake and mobility limitation in the Health ABC Study

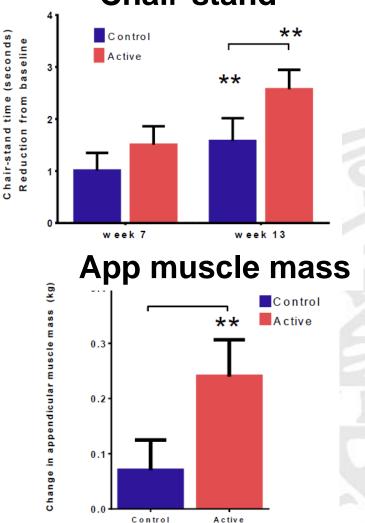
1998 우/*장*, 70-79 y com-dw

- 6-year follow-up
- Tertiles of protein intake (FFQ)
- Limited walking (400 m) or stair climbing (10 steps)
- 1/3 developed mobility lim

Conclusion: Protein intake >1 g/kg bw/d reduces 6-y risk of mobility limitation T1 – <0.7 g/kg bw/d T2 – 0.7-1.0 g/kg bw/d T3 – >1 g/kg bw/d

T1 vs T3: HR 1.89 (Cl 1.41-2.44) T2 vs T3: HR 1.49 (Cl 1.20-1.84) to develop mobility limitation when compared to >1 g prot/kg bw/d

Houston DK et al. JAGS 2017


Protein + leucin + vitamin D to sarcopenic non*malnourished* older adults: The Provide Study

(seconds)

- $380 > 65 y, 77 \pm 1 y, sarcopenic, non$ malnourished,
- RCT for 13 weeks •
- 40 g prot, 3 g leucin, 1600 IU vit D, 300 ٠ kcal vs. isocaloric placebo
- Primary outcomes: SPPB, HGS,
- Secondary outcomes: Chair-stand, DXA ٠

Conclusion:

- Faster 5 times chair stand
- Gains in appendicular muscle mass •

Chair-stand

Bauer et al. JAMDA 2015

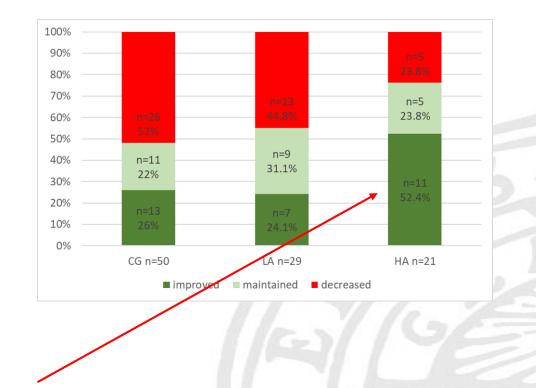
Older Person Exercise and Nutrition Study: The OPEN Study

100 NH res, >75 y (mean 86 y), BMI<30

RCT: 12 weeks

Intervention:

- Sit-to-stand x4/d
- Protein drink x2/d


Control: Usual care

Outcome:

- Chair-rise 30 sec
- Gait speed
- Balance, ADL, etc

Conclusions

High adherence to sit-to-stand exercise + ONS improved chair-rise capacity and gait speed in old nursing home residents

Grönstedt et al. Submitted

Other nutrients

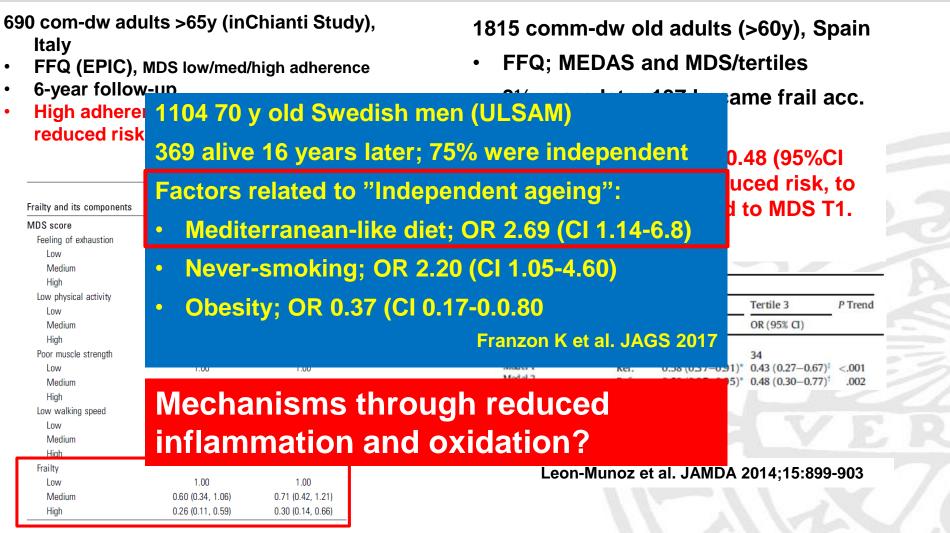
- Fat quality?
- Vitamin D?
- Healthy Mediterranean
 like diet?

N-3 fatty acids may improve muscle mass and function in healthy old adults

Treatment effect 60 healthy, 60-85 y Thigh muscle volume Thigh muscle volume 240 6 months RCT, 160 percent N-3 fatty acids – 3.3 g/d 2 . 80 cm³ r h 0 Linoleic acid (C) -80 -160 -Outcome; Handgrip strength Handgrip strength Thigh volume, 山巾 2 Grip strength, L 0 bercent ţ, **1-RM strength** -2 -10 1-RM strength 1-RM strength **Conclusion:** 6-mo treatment with n-3 FA 10 3 . rcent increased muscle mass and ĝ improved muscle strength in -10 healthy old adults n-3 PUFA n-3 PUFA Control Control 6 mo treatment effect Smith et al. AJCN 2015

Meta-analysis: 17 RCT Meta-analysis: 30 RCT Meta-analysis: 15 RCT • Quadriceps strength Stand. Mean Diff of • Hand grip strength various strength tests • Timed up and go (TUG) Std diff in means and 95% CI diff in means and 95% Cl Mean difference SD Tota IV Random 95% C 0,824 0,940 0,629 0,526 Barker et al. 201 Glendenning 2012 333 -0.02 0.08 353 0,820 0,622 0,107 0,750 Binder E 1995 Kenny 2003 04 01 29 13 5% Bischoff et al. 200 -0,376 -0,055 -0.394 Pfeifer 2009 114 -17 2.5 114 11 4% 140091189 Bunner et al. 2008 Pirotta 2015 0.09 0.09 12 0.06 0.05 13 31.3% 0.03 [-0.03, 0.09 132 -2.9 1.4 129 11.7% -18 24 1.10 [0.62, 1.58 622 638 100.0% 0 31 [0 10 0 5 Still confused... eneity: τ² = 0.03; χ² = 82.05, df = 4 (P < 0.00001) /² = 95% overall effect: Z = 2.93 (P = 0.003) Comparator Interventio Keep serum VitD >50 nmol/l Results: No effect on HGS. and (>20 ng/ml) indications of deteriorated TUG 0,158 -0,285 -0,191 -0,446 -0,205 1,414 1,246 0,737 0,115 0,281 0,014 0,218 0,249 0,248 0,759 0,017 Soncoatanasilo et al. 2009 0,786 0,481 0,273 -0,166 0,038 0,170 ·1.00 0.50 1.00 Verhaar et al. 2000 Ward et al. 2010 Wood et al. 2014 Zhuet al. 2010 **Favours Control** Favours Vitamin D

Results: Overall no effect, but in 2 studies w. Vit D <25 nmol/l Vit D suppl. resulted in improved leg strength


Stockton et al. Osteopor Int 2011

Results: A small significant effect on global muscle strength, but no effects on muscle mass or power

Beaudart et al. J Clin Endocrnol Metab 2014 Rosendahl-Riise et al. JHND 2017

High adherence to a Mediterranean-like diet is associated with reduced risk of frailty – prospective studies

Talegawkar et al. J Nutr 2012;142:2161-6

Treatment of malnutrition, sarcopenia and frailty/gerastenia in old adults

Thanks!

Screen for malnutrition/sarcopenia

- Diagnosis of malnutrition acc. to GLIM criteria
 Nutrition therapy
- Energy intake (incl. supplementation)
 - 30 kcal/kg bw/d individualize
- Protein and amino acid intake (incl. supplementation)
 - Target 1.0-1.5 g/kg bw/d individualize
- Other nutrients
 - Vitamin D supplementation
 - Target serum concentration to exceed 50 nmol/
 - Essential fatty acids supplementation n-3,
- Healthy food patterns basic food intake
 - Traditional Mediterranean, Traditional Asian

Exercise

Combine nutritional therapy with physical activity Add resistance training (3 t/w) to the regular daily aerobic activities